
2 Model Neurons II: Conductances and Morphology

6.2 Conductance-Based Models

The electrical properties of neurons arise from membrane conductances
with a wide variety of properties. The basic formalism developed by
Hodgkin and Huxley to describe the Na+ and K+ conductances respon-
sible for generating action potentials (discussed in chapter 5) is also used
to represent most of the additional conductances encountered in neuron
modeling. Models that treat these aspects of ionic conductances, known as
conductance-based models, can reproduce the rich and complex dynam-conductance-based

model ics of real neurons quite accurately. In this chapter, we discuss both single-
and multi-compartment conductance-based models, beginning with the
single-compartment case.

To review from chapter 5, the membrane potential of a single-compartment
neuron model, V, is determined by integrating the equation

cm
dV
dt

= −im + Ie

A
. (6.1)

with Ie the electrode current, A the membrane surface area of the cell, and
im the membrane current. In the following subsections, we present ex-
pressions for the membrane current in terms of the reversal potentials,
maximal conductance parameters, and gating variables of the different
conductances of the models being considered. The gating variables and
V comprise the dynamic variables of the model. All the gating variables
are determined by equations of the form

τz(V)
dz
dt

= z∞(V) − z (6.2)

where we have used the letter z to denote a generic gating variable. The
functions τz(V) and z∞(V) are determined from experimental data. For
some conductances, these are written in terms of the open and closing
rates αz(V) and βz(V) (see chapter 5) as

τz(V) = 1
αz(V) + βz(V)

and z∞(V) = αz(V)

αz(V) + βz(V)
. (6.3)

We have written τz(V) and z∞(V) as functions of the membrane potential,
but for Ca2+-dependent currents they also depend on the internal Ca2+
concentration. We call the αz(V), βz(V), τz(V), and z∞(V) collectively
gating functions. A method for numerically integrating equations 6.1 and
6.2 is described in the appendices of chapter 5.

In the following subsections, some basic features of conductance-based
models are presented in a sequence of examples of increasing complexity.
We do this to illustrate the effects of various conductances and combina-
tions of conductances on neuronal activity. Different cells (and even the
same cell held at different resting potentials) can have quite different re-
sponse properties due to their particular combinations of conductances.
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Research on conductance-based models focuses on understanding how
neuronal response dynamics arises from the properties of membrane and
synaptic conductances, and how the characteristics of different neurons
interact when they are coupled to each other in networks.

The Connor-Stevens Model

The Hodgkin-Huxley model of action potential generation, discussed in
chapter 5, was developed on the basis of data from the giant axon of the
squid, and we present a multi-compartment simulation of action poten-
tial propagation using this model in a later section. The Connor-Stevens
model (Connor and Stevens, 1971; Connor et al. 1977) provides an alterna-
tive description of action potential generation. Like the Hodgkin-Huxley
model, it contains fast Na+, delayed-rectifier K+, and leakage conduc-
tances. The fast Na+and delayed-rectifier K+ conductances have some-
what different properties from those of the Hodgkin-Huxley model, in
particular faster kinetics, so the action potentials are briefer. In addition,
the Connor-Stevens model contains an extra K+ conductance, called the
A-current, that is transient. K+ conductances come in wide variety of dif- A-type potassium

currentferent forms, and the Connor-Stevens model involves two of them.

The membrane current in the Connor-Stevens model is

im = gL(V − EL) + gNam3h(V − ENa) + gKn4(V − EK) + gAa3b(V − EA)

(6.4)

where gL = 0.003 mS/mm2 and EL = -17 mV are the maximal conductance
and reversal potential for the leak conductance, and gNa = 1.2 mS/mm2,
gK = 0.2 mS/mm2, gA = 0.477 mS/mm2, ENa = 55 mV, EK = -72 mV, and
EA = -75 mV (although the A-current is carried by K+, the model does not
require EA = EK) and are similar parameters for the active conductances.
The gating variables, m, h, n, a, and b, are determined by equations of the
form 6.2 with the gating functions given in appendix A.

The fast Na+ and delayed-rectifier K+ conductances generate action po-
tentials in the Connor-Stevens model just as they do in the Hodgkin-
Huxley model (see chapter 5). What is the role of the additional A-current?
Figure 6.1 illustrates action potential generation in the Connor-Stevens
model. In the absence of an injected electrode current or synaptic input,
the membrane potential of the model remains constant at a resting value of
−68 mV. For a constant electrode current greater than a threshold value,
the model neuron generates action potentials. Figure 6.1A shows how
the firing rate of the model depends on the magnitude of the electrode
current relative to the threshold value. The firing rate rises continuously
from zero and then increases roughly linearly for currents over the range
shown. Figure 6.1B shows an example of action potential generation for
one particular value of the electrode current.
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Figure 6.1: Firing of action potentials in the Connor-Stevens model. A) Firing
rate as a function of electrode current. The firing rate rises continuously from zero
as the current increases beyond the threshold value. B) An example of action po-
tentials generated by constant current injection. C) Firing rate as a function of
electrode current when the A-current is turned off. The firing rate now rises dis-
continuously from zero as the current increases beyond the threshold value. D)
Delayed firing due to hyperpolarization. The neuron was held hyperpolarized for
a prolonged period by injection of negative current. At t = 50 ms, the negative
electrode current was switched to a positive value. The A-current delays the oc-
currence of the first action potential.

Figure 6.1C shows the firing rate as a function of electrode current for the
Connor-Stevens model with the maximal conductance of the A-current set
to zero. The leakage conductance and reversal potential have been ad-
justed to keep the resting potential and membrane resistance the same as
in the original model. The firing rate is clearly much higher with the A-
current turned off. This is because the deinactivation rate of the A-current
limits the rise time of the membrane potential between action potentials.
In addition, the transition from no firing for currents less than the thresh-
old value to firing with suprathreshold currents is different when the A-
current is eliminated. Without the A-current, the firing rate jumps dis-
continuously to a nonzero value rather than rising continuously. Neurons
with firing rates that rise continuously from zero as a function of electrode
current are called type I, and those with discontinuous jumps in their fir-
ing rates at threshold are called type II. An A-current is not the only mech-type I, type II
anism that can produce a type I response but, as figures 6.1A and 6.1C
show, it plays this role in the Connor-Stevens model. The Hodgkin-Huxley
model produces a type II response.

Another effect of the A-current is illustrated in figure 6.1D. Here the model
neuron was held hyperpolarized by negative current injection for an ex-
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Figure 6.2: A burst of action potentials due to rebound from hyperpolarization.
The model neuron was held hyperpolarized for an extended period (until the con-
ductances came to equilibrium) by injection of constant negative electrode current.
At t = 50 ms, the electrode current was set to zero, and a burst of Na+ spikes was
generated due to an underlying Ca2+ spike. The delay in the firing is caused by
the presence of the A-current in the model.

tended period of time, and then the current was switched to a positive
value. While the neuron was hyperpolarized, the A-current deinactivated,
that is, the variable b increased toward one. When the electrode current
switched sign and the neuron depolarized, the A-current first activated
and then inactivated. This delayed the first spike following the change in
the electrode current.

Postinhibitory Rebound and Bursting

The range of responses exhibited by the Connor-Stevens model neuron can
be extended by including a transient Ca2+ conductance. The conductance transient Ca2+

conductancewe use was modeled by Huguenard and McCormick (1992) on the basis of
data from thalamic relay cells. The membrane current due to the transient
Ca2+ conductance is expressed as

iCaT = gCaT M2H(V − ECa) (6.5)

with, for the example given here, gCaT = 13 µS/mm2 and ECa = 120 mV.
The gating variables for the transient Ca2+ conductance are determined
from the gating functions in appendix A.

Several different Ca2+ conductances are commonly expressed in neuronal
membranes. These are categorized as L, T, N, and P types. L-type Ca2+ L, T, N and P type

Ca2+ channelscurrents are persistent as far as their voltage dependence is concerned, and
they activate at a relatively high threshold. They inactivate due to a Ca2+-
dependent rather than voltage-dependent process. T-type Ca2+ currents
have lower activation thresholds and are transient. N- and P-type Ca2+
conductances have intermediate thresholds and are respectively transient
and persistent. They may be responsible for the Ca2+ entry that causes the
release of transmitter at presynaptic terminals. Entry of Ca2+ into a neuron
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6.5 Chapter Summary

We continued the discussion of neuron modeling that began in chapter 5
by considering models with more complete sets of conductances and tech-
niques for incorporating neuronal morphology. We introduced A-type K+,
transient Ca2+, and Ca2+-dependent K+ conductances and noted their ef-
fect on neuronal activity. The cable equation and its linearized version
were introduced to examine the effects of morphology on membrane po-
tentials. Finally, multi-compartment models were presented and used to
discuss propagation of action potentials along unmyelinated and myeli-
nated axons.

6.6 Appendices

A) Gating Functions for Conductance-Based Models

Connor-Stevens Model

The rate functions used for the gating variables n, m, and h of the Connor-
Stevens model, in units of 1/ms with V in units of mV, are

αm = 0.38(V + 29.7)

1 − exp[−0.1(V + 29.7)]
βm = 15.2 exp[−0.0556(V + 54.7)]

αh = 0.266 exp[−0.05(V + 48)] βh = 3.8/(1 + exp[−0.1(V + 18)])

αn = 0.02(V + 45.7)

1 − exp[−.1(V + 45.7)]
βn = 0.25 exp[−0.0125(V + 55.7)] . (6.33)

The A-current is described directly in terms of the asymptotic values and
τ functions for its gating variables (with τa and τb in units of ms and V in
units of mV),

a∞ =
[

0.0761 exp[0.0314(V + 94.22)]
1 + exp[0.0346(V + 1.17)]

]1/3

(6.34)

τa = 0.3632 + 1.158/(1 + exp[0.0497(V + 55.96)]) (6.35)

b∞ =
[

1
1 + exp[0.0688(V + 53.3)]

]4

(6.36)

and

τb = 1.24 + 2.678/(1 + exp[0.0624(V + 50)]) . (6.37)
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